35 research outputs found

    Characterization of complex quantum dynamics with a scalable NMR information processor

    Get PDF
    We present experimental results on the measurement of fidelity decay under contrasting system dynamics using a nuclear magnetic resonance quantum information processor. The measurements were performed by implementing a scalable circuit in the model of deterministic quantum computation with only one quantum bit. The results show measurable differences between regular and complex behaviour and for complex dynamics are faithful to the expected theoretical decay rate. Moreover, we illustrate how the experimental method can be seen as an efficient way for either extracting coarse-grained information about the dynamics of a large system, or measuring the decoherence rate from engineered environments.Comment: 4pages, 3 figures, revtex4, updated with version closer to that publishe

    Benchmarking quantum control methods on a 12-qubit system

    Full text link
    In this letter, we present an experimental benchmark of operational control methods in quantum information processors extended up to 12 qubits. We implement universal control of this large Hilbert space using two complementary approaches and discuss their accuracy and scalability. Despite decoherence, we were able to reach a 12-coherence state (or 12-qubits pseudo-pure cat state), and decode it into an 11 qubit plus one qutrit labeled observable pseudo-pure state using liquid state nuclear magnetic resonance quantum information processors.Comment: 11 pages, 4 figures, to be published in PR

    Symmetrised Characterisation of Noisy Quantum Processes

    Full text link
    A major goal of developing high-precision control of many-body quantum systems is to realise their potential as quantum computers. Probably the most significant obstacle in this direction is the problem of "decoherence": the extreme fragility of quantum systems to environmental noise and other control limitations. The theory of fault-tolerant quantum error correction has shown that quantum computation is possible even in the presence of decoherence provided that the noise affecting the quantum system satisfies certain well-defined theoretical conditions. However, existing methods for noise characterisation have become intractable already for the systems that are controlled in today's labs. In this paper we introduce a technique based on symmetrisation that enables direct experimental characterisation of key properties of the decoherence affecting a multi-body quantum system. Our method reduces the number of experiments required by existing methods from exponential to polynomial in the number of subsystems. We demonstrate the application of this technique to the optimisation of control over nuclear spins in the solid state.Comment: About 12 pages, 5 figure

    Spintronics and Quantum Dots for Quantum Computing and Quantum Communication

    Get PDF
    Control over electron-spin states, such as coherent manipulation, filtering and measurement promises access to new technologies in conventional as well as in quantum computation and quantum communication. We review our proposal of using electron spins in quantum confined structures as qubits and discuss the requirements for implementing a quantum computer. We describe several realizations of one- and two-qubit gates and of the read-in and read-out tasks. We discuss recently proposed schemes for using a single quantum dot as spin-filter and spin-memory device. Considering electronic EPR pairs needed for quantum communication we show that their spin entanglement can be detected in mesoscopic transport measurements using metallic as well as superconducting leads attached to the dots.Comment: Prepared for Fortschritte der Physik special issue, Experimental Proposals for Quantum Computation. 15 pages, 5 figures; typos corrected, references adde

    Implementation of the Five Qubit Error Correction Benchmark

    Get PDF
    The smallest quantum code that can correct all one-qubit errors is based on five qubits. We experimentally implemented the encoding, decoding and error-correction quantum networks using nuclear magnetic resonance on a five spin subsystem of labeled crotonic acid. The ability to correct each error was verified by tomography of the process. The use of error-correction for benchmarking quantum networks is discussed, and we infer that the fidelity achieved in our experiment is sufficient for preserving entanglement.Comment: 6 pages with figure
    corecore